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SECTION I

INTRODUCTION

This final report summarizes a study of hybrid electro-
static-electromagnetic techniques for the calculation of surface
currents caused by the motion of photoelectrons emitted from
satellites. Section II presents the results using the hybrid
SQU1D code for a series of SGEMP test cases. Section III
describes a technique to treat currents in small struts and
presents some calculations using this technique. Section IV
presents the theory of nonreflective boundary conditions for
electromagnetic SGEMP codes. Included are one- and two-
dimensional calculations showing the effectiveness of the
boundary conditions in preventing the reflection of outgoing

electromagnetic waves.

R
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SECTION II

SGEMP RESPONSE CALCULATIONS
USING THE SQU1D HYBRID EM CODE

A series of SGEMP response calculations was performed
using the hybrid SQU1D code on the configuration shown in z
Figure 1. The diameter of the support varied between zero
and 10 cm. This simple axisymmetric configuration is similar
to that of a proposed SGEMP experiment. Our purpose was to
examine the efficiency of a hybrid calculational technique,
SQU1D, for determining SGEMP response. The SQU1D technique
treats heavily space charge limited behavior close to emitting
surfaces with high resolution. It calculates dipole correct
electromagnetic response for far field effects while including
correct monopole electric fields and particle trajectories near
emitting surfaces.

In Section 2.1 of this report we discuss, in detail, the
SQU1D theory. The particular calculations performed are des-
cribed in Section 2.2. Finally, we discuss the numerical re-
sults and their implications to future SGEMP response calcula-
tions in Section 2.3.

2.1 THEORRGICAL BASIS OF THE HYBRID SQU1D CODE

2.1.1 The Purpose of SQUID

The reader should be familiar with the basic techniques
of fully electromagnetic (EM) particle codes, which have been
fully described elsewhere (References 1, 2). This discussion

3

1. Boris, J. P., "Relativistic Plasma Simulation-Optimization b
of a Hybrid Code," Proc. 4th Conf. on Numerical Simulation i

of Plasmas, pp. 3-67, NRL, Washington, D.C., November 1970. ﬂ
I

2. Katz, Ira, James Harvey and Andrew Wilson, "Particle Simu-
lation Techniques for SGEMP," Systems, Science and Software
Report SSS~R-75-2604, July 1975.
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emphasizes the differences between SQU1D techniques and the
usual particle code algorithms. It is in the neighborhood

of object boundaries that rapid variations in field strengths
and charge densities occur. SQUID is a technique for accurately
calculating these small wavelength fluctuations and their effect
on the generation of long wavelength modes.

The SQU1D concept has been developed to handle problems
in which the spatial scale of electrostatic fields close to
electron-emitting surfaces is small. Whenever the character-
istic space-charge limiting distance is much less than the
dimensions of the emitting surface, an ordinary EM particle
code is incapable of treating the problem accurately unless
very small spatial zones are used, and this, of course, leads
to very long calculations.

The initial ideas of the SQU1D concept are outlined in
Reference 2. Briefly stated, a one~dimensional subgrid is
defined in the region along the surface of a conducting object
where space-charge limiting takes place. The particle dynamics
in this finely resolved grid can then be calculated accurately.
The resulting charge density is used to determine the screened
normal component of the electric field near the surface of the
emitting object.

Because the surface charge density and normal electric
fields play an important role in the SQU1D method, the center-
ing scheme adopted in the code is different from that of ordi-
nary EM particle codes. These differences and the treatment of
boundary conditions are described in Section 2.1.2.

Some care must be exercised in distributing the charge
of a particle among adjacent cells in order that the charge
dipoles set up along boundaries by moving particles are accu-
rately calculated. Currents on the surface can be generated by
EM wave interactions. In Section 2.1.3, we describe an algorithm
to calculate particle currents so that transverse EM waves gene-
rated by these individual particles will be calculated correct
to dipole order.
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In Section 2.1.4, we describe how physically meaningful
longitudinal electric fields can be calculated with subgrid
resolution in those cases where the transverse fields have
wavelengths long compared with cell dimensions, but where sig- ;
nificant charge density fluctuations occur near the surface on :
a scale length small compared with cell dimensions.

2.1.2 SQU1D Centering Scheme

Conducting boundary conditions on the electromagnetic
fields in particle codes are easily applied; the tangential
electric field is forced to be zero. 1In the ordinary centering
of particle code grids, conducting physical boundaries pass
through points where the tangential electric fields are defined
as in Figure 2. Since the boundary conditions are applied
directly, this formulation is extremely convenient to apply and
is most commonly used. However, some quantities relevant to
surface phenomena, such as surface charges, are not directly
accessible and, indeed, must be extrapolated from interior
values. In dealing with the effects of photon generated elec-
trons on metallic objects, the surface response is the desired
information. Consequently, we have adapted a modified center-
ing scheme as shown in Figure 3 where normal electric fields
and tangential magnetic fields are defined directly on the sur-
face. This enables one to calculate surface charges and skin
currents directly. The boundary condition on the tangential
electric field is

EH (below surface) —EH (above surface)

Since all our field equations are advanced using a first-order
symmetric difference form, this boundary condition is entirely
equivalent to

0:

19—

[EI + E

E = ]
|| (surface) | (below surface) Il (above surface)
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Figure 2 - Conventional centering in two-dimensional
electromagnetic code.
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2.1.3 SQUID Dipole Correct Current Algorithm

For purposes of numerical smoothing, finite-sized par-
ticles are frequently used in EM particle codes. However, the
literal interpretation of a particle as a charge smeared over
a finite region is fraught with danger in problems where bound-
aries play an important role. In cases where limiting occurs
within a single cell, this interpretation can lead to incorrect
results when the dipole field (resulting from the motion of
charge away from a surface) is being calculated.

Instead of regarding a particle as a finite-sized object
which is pushed according to appropriate area weights of the
electric fields in its vicinity, we prefer to consider the
particle as located at a point in space and to push it by the
interpolated field at that pecint. The difference in interpre-
tation is merely semantic except near boundaries. There, the
normal area-weighted treatment must be reconsidered.

While a particle is considered localized at a point for
dynamical purposes, its charge density must be interpolated
between adjacent cells because the charge density is evaluated
at specified points in the grid, namely, at cell centers (see
Figure 3). Near boundaries, special care has to be given to
this interpolation in order that the current calculated gives
rise to the correct electromagnetic field.

If a charge q moves a perpendicular distance x from
a conducting surface, a distant observer sees a dipole field
corresponding to a dipole of strength

d = 2 gx

The modified centering scheme in Figure 3 corresponds to cell
centered charge densities. First examine the cacse of a

particle at x between L/2 and 3L/2 from the surface as
shown in Figure 4. If this is the only charge in the system,
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Figure 4 - A single particle a distance x
above the surface.
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a=p; + p,

2qx=2p, (L/2) +2 p2(3L/2)

Solving for Py and P find

3 x - L/2
pl'q(l' 7 )

Pp =1 (x -LL/z)

Thus, the correct finite difference current j is just

qv L/2< x< 3L/2
)12
0 all other x
For 0 < x < L/2, there are not enough unknowns (p2 = 0) and in
order to satisfy the distant observer, retain only the dipole

equation

2qx=2p (L/2)

getting

0 all other x

‘ 2 qv 0< x<L/2

then two equations are needed to get the correct dipole strength;




One can visualize these dipole correct currents as resulting
from finite size CIC particles of charge g centered at x
along with image particles of charge q centered at -x. As

it nears the surface, both the particle and its image contribute
to the surface normal current j01. This enables one to easily
calculate currents for any velocity orientation which will cor-
respond to the correct dipole moment to a distant observer.

The variation in this dipole strength generates transverse
electromagnetic waves.

2.1.4 Correcting the Local Longitudinal Field

In the previous section, we dealt with the distant field
strength which for a single emitted charge is dipolar in nature.
However, the dominant field felt by the test charge is the
monopole attraction from its image. In the one-dimensional
case, the field on a test sheet is constant once the charge
leaves the surface and the field on the surface rises immedi-
ately to the same constant as shown in Figure 5. However,
the current algorithm described in Section 2.1.3 gives a sur-
face field that rises linearly until the charge sheet is
half a cell out from the surface. This is clearly an unphysi-
cal result when describing subgrid variations in charge density.
Below, a technique is discussed for constructing the appropriate
longitudinal electric field in the vicinity of the surface
assuming that the charge density varies much more slowly
parallel to the surface than in the normal direction.

The charge density, o, on a surface zone can be expressed
as the sum of time integrals of the skin current k and perpen-
dicular particle current j,

o= _f dt (\7‘i'k+ v j)




t
\

% L/2

Figure 5 - The surface electric field for
a charge sheet a distance x
above the conducting surface. '
The solid line is the phvsical i
field, the dashed line is that
generated using the dipole con-
sistent current described in
Section 2.1.
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If the dipole correct current discussed in Section 2.1 is used, f
the surface charge reflects both the linear turn-on of the sur- |
face electric field and the partial tangential current cancel-
ling due to the image current.

S SO

|

= - . -+ o o “‘

Gdipole f (Vn kdipole V_L Jdipole) 48 i;

It is simple to calculate in the code the actual particle cur-
rent leaving the surface. The image charge contribution to

the surface current may be calculated in the following manner.
If a particle of charge g 1is a distance 0 < x < L/2 from

T

the surface, its contribution to the parallel current (real) is

e

=

However, for the dipole current, the image contribution is inclu-

ded in the current and

.dipole _ (L/2+x) ; (L/Z-x)
]“ G L qv & L (—Q)VH
particle image

Therefore, in order to find the true (monopole) charge density
on a surface, include the complete image particle current

j = (-q

| (image)

in the skin current k. Assuming that the contributions

to the surface charge from particles more than one cell

away are the same in both monopole and dipole approximations,
then

16




t

o'monopole i adipole i / [V_i_ . (jmonopole n jdipole)
0

+ V- )] dt

monopole kdipole

Knowing o , the true surface electric field can be

monopole
found. Spatial variation of the monopole electric field normal

to the surface can easily be approximated if

b <]
i -k
by a simple integral
X -
. Ei(x)=E_L(0)+ fp(é)d;
0

This equation is the basis of the SQU1D subgrid screening ap-
proximation. ]

In practice, a pseudo-one-dimensional charge density is
calculated for cells adjacent to emitting surfaces as shown in
Figure 6. These charge densities are then used to give a
screened normal component cf the electric field which acceler-
ates the particles.

X,

s ik 5 T g
€ (xl)_EJ_surface +[ 4 (x_L)dxl
0

-1/2
v, 2y T2 ate/my v !
t+1/2 _ _ t-1/2
v =V

t
i il + At(e/m) € (X.L)

Vi

e
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O~ The Electromagnetic I3
Grid 4
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/ SQU1D Grid

Spacecraft

Surface
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- The grid for the high fluence SGEMP problem. Each
cell adjacent to a boundary, n, contains an entire
guasi-one-dimensional grid. Associated with each
SQU1D grid is a one-dimensional charge density
Cn(x)) used for calculating the normal component
of the electric field within the cell adjacent

to the spacecrait surface.




As a result, the electrostatic field in the limiting sheath

region is resolved in great detail in the direction normal
to the surface, the direction in which it varies most rapidly.

2.2 HYBRID EM CALCULATIONS

Calculations of the response of an isolated cylinder to
photogenerated electron emission have been performed in accor-
dance with Task 1 (Section 4.1) of the Work Statement using
the SQU1D code.

For the sequence of calculations, a regular mesh with
equal spacings of 10 cm in the r and 2z directions was em-
ployed for electromagnetic purposes. The five normal emission

zones were subdivided, in accordance with the SQU1D formulation,

into 0.5-cm regions. The appearance of the gridded problem is
shown in Figure 7.

Electron emission was accomplished through the use of
seven energy bins. The angular distribution f£(6,¢) was
cos® in the normal direction and uniform in the polar angle
¢. The bin structure is as follows:

Fractional ; Velocity (in units of
Bin fluence Energy (keV) 10 keV velocity)
1 0.20028 2.79 0.50758
2 0.24054 7.43 0.86174
3 0.21810 12.44 1.1139
4 0.16546 17.34 1,.3157
5 0.96678 22.21 1.4896
6 0.7181 29.79 1.7227
7 0.00713 45.94 2.1398

The bin selection was strictly random for each particle
in most runs, but in the final series, conditional selection
was employed to guarantee that an equal number from each bin
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was chosen each cycle. The emission was uniformly spaced in

r along the surface. The pulse shape was given by a triangle
with rise time of 2.5 x 10_9 sec with a peak current of

7.88 amp/cmz.

The major parameter variations among the completed runs
have been the number of particles emitted per cycle, the method
of bin selection and the time step. Benchmark results were
obtained using

At = 5 x 10'-11 sec

emission = 300 particles/cycle

This calculation had, on occasions, over 6000 particles within
the grid, and the 200 cycles were required to go out to 10 ns.
Total Central Processor Unit (CPU) time for the run, and a
myriad of diagnostics, was 1622 sec. Subsequent runs were
primarily to determine the accuracy of reducing the numbers

of particles emitted and increasing the time step. Since the
time step is not Courant limited by the electromagnetic calcu-

lation as long as it is below 2.2 x 10-10 sec, a 10-10

sec time
step was chosen as an optimum from both cost and pulse resolution
viewpoints. By reducing the particle emission to 70 per cycle
and using the 10—10 sec time step, CPU time dropped almost an
order of magnitude to 225 sec, with an accuracy of a few per-
cent in quantities characterized by long wavelengths. This was
achieved by using nonindependent energy bin selection, that is,
by constraining the energy bin choice so that an equal number
from each bin is emitted per cycle. Surface currents in the
cylinder midplane are shown in Figure 8. The upper curve is
from the benchmark run, the lower from the few particle, long
time step run. The closeness of these results implies that, at
least for the simple geometry considered, accurate SGEMP surface

currents can be obtained with very short computations.

21
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The production runs had

At = 10—10 sec

i,

emission = 140 particles/cycle

Typical runs used 5 minutes of CPU time and had a maximum of

around 1500 particles in the mesh at any one time. The maximum
deviation from the desired net emission current was less than
6 percent, while for 70 percent of the cycles, the emission cur-

rent was within 3 percent of the desired triangular ramp.

The 5 cm radius support rod was inserted by setting the
electric field component in the z-direction to zero for the first
10 zones near the axis. For the 1 cm radius support, a set of
radial electric fields and ¢ component magnetic fields 1 cm
off axis was constructed. Maxwell's equations were solved
for these positions using first-order differences. However,
the [(l/r)(S/Sr)rB¢] contribution to Ez near the axis
was no longer a centered first-order difference and, as a
result, was accurate only to order AR (as opposed to the rest
of the grid where the centered differences were accurate to
order ARZ).

Skin currents at points C and E (see Figure 1) are
shown in Figures 9 and 10. These currents are in amperes
per meter and are cobtained by multiplying the surface magnetic
fields (in gauss) by 79.58. The most prominent feature of the
midplane currents (Figure 9) is the second peak occurring
approximately 5 nanoseconds after the first peak. One possible
mode that would give use to this second peak is that of a wave
generated at point B, going out to the wall radially and being
reflected back in. The path length of such a wave differs by
about 1.5 meters from the direct B to C distance.

23




RS UR SEh 5 r0 o

e

oo g

e

*I932weTp pox 3xoddns jJo uoT3ounjy e Se AIRA 30U PTIP 3FUDIAND
STYJL °*Jo32u xod saiadwe UT D 3UTOd 3B JULIIND 20BJINS dYL - 6 INbTJ

£0-002" LO-£21)°

Lo-L5}

L0-0S}°

LO-¢£L°

(0°9s) BwIL

L0-L1 )

L0001

&0-£€3° &0-L99°

20-005°

80-¢¢¢°

20-L5L”

20 +0GF "~

20+00€°~

20+00Z "~

Z0+D0) "~

000°

20+001°

204002

20+00L"

20+00F°

20+00S5°

Z20+009°

2osooL”

20+008"

20+006°

€000

juaxand sr

24




s AP I A 0

35 e

Vel

) |
LUl

7% ™
8J

1

E,'

x103 @ae sjord ay3 ‘3ybra 03 3IJOT woig

*sjaoddns Ie3sweIp-wo-QT1 ‘-2 ‘-0

*SI932WeTp poI JUDIADIITP

291y3 9y3 103 ¥ jutod 3e I938w Iad saiadwe UT S3ULIIND 20BIANS SYL -

£0-410° 4A-001" M-EER™ BO-LPP° RO-OUS" BU-fiS" EO-L28°

£0-40)° £0-001° 20-£68° B0-L99° 80-005° BO-CCC° R0-LP)°

0T @Inb1d

(o®s) 2wty

L0-LV)° L0-001° BO-E58° BO-L99°

80-00S" RO-CEE" 20-494°

Z20+00S"

£0+004 "

£0+05)°

zos00z*

20+00)°~

204004 °

20002

Z0+00¢*

20+06p "

20+00S°

20+009°

20004 "~

100005° -

b 3
¢
Jusxan) se

20+054°

Lot




In Figure 10, the inclusion of a conducting support
allows charge to escape, preventing the formation of a "sloshing"
mode. As the diameter of the support increases, its inductance

decreases, so that the current transmitted reaches higher values.

Complete time-dependent information for points A through
G has been plotted and is available upon request. |

2.3 DISCUSSION OF RESULTS

In this subsection, two aspects of the computational tech-
niques used in performing these calculations are examined: (1)
Is subgrid screening important in determining particle dynamics
and SGEMP response variables (such as skin currents)? (2) Is
the hybrid approach an efficient technique, or are ordinary EM

codes competitive when it comes to computer costs?

The importance of subgrid screening can be shown in
several ways. Analytically, it is an easy procedure to show
that if, for a monoenergetic electron beam in an EM code,

Ax >> v/wp where Ax 1is the EM grid spacing, v 1is the

BT ot

emission velocity and wp the plasma frequency of the beam,
the electric field within the first zone will be described in-
correctly since the limiting distance is less than a zone size.
Since the finite difference representation of Maxwell's equa- q
tions assumes linear variation of electric fields within a zone,
the finite difference representation is clearly inappropriate.

For the case in point, more than half the current is composed

of electrons below 12 keV in energy (v v 7 X lO9 cm/sec) .

An emitted current of 1 A/cm2 (1/7 of peak value) gives
a plasma frequency
9 -1 i

* 2 10
0y X sec
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and a limiting distance
v/w_ = 3.5 cm
/ P

Therefore, the majority of the electrons should limit
well within the 10 cm zone size for almost the entire duration
of the pulse. Consequently, one would expect significant field
variations within zones bordering the emitting surface.

Figure 11 is a plot of the normal component of the electric
field on a particle in the near axis zone as a function

of distance from the emitting surface. The departure from
linearity is obvious. Figure 12 shows the positions of the
particles at 3 nanoseconds into the calculation. The high
degree of limiting within 10 centimeters is apparent.

How this nonlinear electric field behavior reflects it-
self in measurable quantities was examined by running the zero
radius support calculation without the subgrid resolution. As
is expected, the induced currents are much greater, and are
almost a factor of 3 more than calculated with SQU1D grid.

The dipole field is incorrect near the surface since it exerts
too little force on low-energy particles, and as a result, their
contribution to the dipole current is unphysically large. We
conclude that if large electromagnetic zones are used in this
calculation, subgrid electric field corrections must be made.

Even though the SQU1D technique enables one to employ
large electromagnetic zones, the particle pushing and field
calculations are more complicated than conventional EM codes.
The relevant guestion then concerns the cost effectivenss of
the hybrid technique. In this area, the results seem gquite
encouraging.

Based on the spatial resolution required to perform an
accurate treatment of the heavily space-charge-limited region
near the emitting surface, the SQU1D zone chosen was 0.5 cm.
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The EM grid spacing was 10 cm. In order to achieve the same
resolution by a purely "brute-force" means it would have been
necessary to reduce the EM grid spacing and hence the time

step by a factor of 20. 1In fact, the savings obtained by the
SQU1D techngiue were less than this on account of the additional
complexity in pushing particles in the SQU1D region. However,
this increased the cycle time by less than a factor of 2, thus
resulting in a net savings of an order of magnitude.

It is worth considering the economy of the SQU1D calcu-
lations performed here. Runs were made with time steps of
S5 x 10“11 £ sec and the number of particles emitted
per cycle ranging from 60 to 300. The few particle (70) runs

using conditional energy bin selection and the lcnger 10-10 sec

sec and 10~

time step gave results within 10 percent of those from the long-
est run on long-wavelength variables (e.g., induced skin cur-
rents) while requiring less than 5 ﬁinutes of UNIVAC 1108 time
to run including long diagnostic outputs and plots. This trans-
lates to running costs of the order of $15. The significance

of the short running time is that three-dimensional calculations
performed in an analogous fashion would be extremely practical
in contrast with the computer time and storage requirements of
three-dimensional calculations using ordinary EM particle codes.

We conclude that for these highly space-charge-limited
SGEMP calculations the SQU1D hybrid technique has been extremely
effective. The results strongly indicate that the dipole-SQU1D
theory, as discussed in Section 2.1 of this report, contains
the physics relevant to SGEMP. While a very fine zoned electro-
magnetic particle code also contains the relevant physics, it
automatically follows unimportant short-wavelength transverse
fields. The time step requirements of SQU1D are of the order R
of the lowest energy electrons times that of an ordinary EM code
of comparable spatial resolution. For the examples presented,

all of which have 0.5 cm resolution, the conservative 10—10 sec
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H time step is more than a factor of 6 larger than the largest

. stable time step for an ordinary electromagnetic code. Thus,
SQU1D enables one to save a large percentage of computer time
with no loss in accuracy.
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SECTION III

A TECHNIQUE FOR TREATING SMALL CURRENT
CARRYING STRUTS IN ELECTROMAGNETIC PARTICLE CODES

The prediction of the electromagnetic response of a
satellite to an external impulse, caused for example by a
short (1078
computational problem. The state-of-the-art for the self-

sec) pulse of X rays, presents a formidable

consistent determination of trajectories of electrons and

the electromagnetic field generated by them is well developed
for many two-dimensional problems. Where there are highly
disparate geometrical length scales, however, as in a hollow
right circular cylinder of radius R with an axially centered
strut of radius a << R , either the computational mesh must
be extremely fine or other methods for treating small scale
lengths must be developed. 1In this section, methods are
formulated for treating thin struts (a in the above examples)
in both two- and three-dimensions. A primary result of the
formulation is the retention of a spatial difference mesh
that is appropriate for the larger scale length, together
with the relatively greater economy in computation associated
with the longer timestep that is permitted (by the Courant
stability condition) in the staggered-leapfrog finite dif-

ference scheme for solving Maxwell's equations.

For the purposes which follow, the Maxwell equations
governing the evolution in time of the electric and magnetic
fields E and ﬁ, respectively, are written in cgs units

>
VxE:-lB_B
-
=+ o
Vx-é:iu.p.l_'.a_g.
¢ (0

where 3 is the current density and c¢ the velocity of light.
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FIELDS NEAR A STRUT

3.1

First consider the fields in the
fectly conducting strut of radius a .
coordinate system whose z-axis concides

JoE

Near the strut,

aBe(a,z,t)

Be(plzrt) 5

aE _(a,z,t)
SO0 A
)

Ep(plzlt)

2 (z,t)

4anl
‘C

2naBe(a,z,t)

and

n

ZwaEp(a,z,t) 41Q(2,t)

The current I

carried by the strut and its charge

vicinity of a per-
In a cylindrical
with the strut axis,

{1)

(2)

(3)

(4)

(5)

Q per

unit length are related by the continuity equation

(%] Ko5)
ol
+
|$
[
I
o

Q)
N

Here,
charge.

Integrating Equation (1) from a

Q|-

(o}
- _a- - -
Ez(p) s — f Ep(c )ap“© 4+

a
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a - -~
3 J. Be(o )dp
a

(6)

we have assumed that the strut neither emits nor absorbs

to p gives

(7)




since Ez(a) 0. From Equations (2) through (5)

2 21
o7 *nlp/a) ¢ (8)

22n(p/a) 9,

Ez(p) 0z (>

The area average of Ez over a cell is given by i

E, av = e %—% o %—It— (9) ii
where |
¢! = 2<snlpra)> (10)
and
L = %7 ¢t (11)

are the capacitance and inductance, respectively, per unit
length of the strut. Here, <f> denotes an area average of

f over a cross section of the cell normal to the strut. If
the cross section of area A 1is approximated by a cylindrical

cell of radius R = % centered on the strut axis, then
R
¢t = 4 [ oantoraras (12)
a
= 2 ¢n(R/a) + a?/R? -1 (13)

In obtaining Equation (9), it has been assumed that the
dominant local fields are quasi-static and, moreover, are axi-
symmetric in the coordinate system centered on the strut. These
assumptions exclude very short wavelength modes corresponding,
for example, to variations depending on the azimuthal angle.
Such short wavelength excitations are probably not very impor-
tant in any practically occurring SGEMP context.
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3.2 3-D DIFFERENCE EQUATIONS

For three~dimensional (3-D) calculations, we adopt
Cartesian geometry and a computational grid whose cells are
identical and whose three mutually perpendicular edges have
arbitrary lengths. The centering scheme is depicted in Figure
13. Letting (i,j,k) be the coordinates of a cell center in
units of the lengths of the basic cell edges, we center the
field and current components accordirg to the following scheme:

jerx= (i+%lj'k+%)
jy’Ey: (ilj+%lk+%)
jzlE23 (iljlk)

BX: (ilj+%lk)

By3 (i+%1jrk)

B,: (i+k,j+45,k+%)

Using a staggered-leapfrog scheme in which E and B
are advanced in a fully space-and-time centered manner, the
difference forms of Maxwell's equations become

BEM 1,3,k - B57R(,3,K) = ~eat (7xE) T (4,5 ,K) (14)
EY L, 3,0 - BRI 00 = eat (7 B) T4, 5,50

- &G

- +3 k) (15) .

The subscript D denotes the difference gradient,

A, (1,3+%,%) =3 (i,3-%,K)
5%

(VDXA)x(irjrk) e

éX}i'j'k+%)-Ay(i'j'k-%)
Az (16)
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Figure 13 - 3-D strut calculation.

36




s

TR ST T T T

AX (i'jlk+!f)—Ax (irjlk""’i) AZ (i"'li!j:k)‘Az (i";!rj 7.9

(VDXA)Y(i,j,k) e =

(17)

A (i,3+%,k)-A (1,3-%,k) Ay(i+%,j,k)-Ayfi—%,j,k)

* . .
(VDXA)z(l,j,k) 5 e

(18)

and 1i,j,k are integral or half-odd integral according to the
centering scheme of Figure 13.

The foregoing equations are intended to apply for
systems where there is no great disparity in length scales.
For systems with highly dissimilar length scales, such as the
cylinder with struts, the foregoing equations must be modified
to avoid the fine-zoning associated with a small strut radius.
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3.3 LINEAR STRUT IN A 3-D GEOMETRY

Consider a linear strut whose axis, parallel to the
z-direction, pierces the x-y plane at the position (I,J) where
Ez is centered. The grid is sufficient to resolve spatial _
variations of the electromagnetic field except within the zones ld
through which the strut passes. There, the local fields vary i
according to Equations (3) and (4). Thus, the difference Equa-
tions (14) and (15) apply at all space points and for all field

components with the following exceptions: ﬁf

t

=1
W

1
a) the equations for B§+2(I,Ji%,k)—B

4

N

-1
and B (It%,J,k)-B; 3 (1%k%,J,k)

t
Y

\

and
b) the equations for E§+l(I,J,k)—E§(I,J,k)

The required modifications of the equations for advancing the
magnetic field components Bx and BY are obtained by setting

EZ(I,J,k)=Ez in Equation (14). Thus, for example,

Ix:-2%

t-

t+5 4 Y 1 £
BX (I,J+1,k)'Bx (IIJ+6rk) =

Et(IIJ+llk)_Et (IIJIk) Et(IIJ+%rk+%)-Et(I'J+%lk—%)
2 z,av v %
-cAt ~ ‘

Ay Az R

(19)

Now it remains only to alter the equations for advancing EZ(I,J,k)
in time. The required modifications are based upon Equations (6) ;
and (9) together with Eguation (20),
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Et+1

t
(I 'J’k)_EZ,aV(I IJ Ik)

1l "z,av _ _ 4r .t _ 4n tho
= T = = (x,J.,k) = I (k)
1
+ (Vx§)§+f(1,J,k) (20)
where Ez =9 is, again, the area average of EZ over a cross
’

section of the zone normal to the strut.

It+a L aIt+l + (l-a)It

is the current carried by the strut, and the parameter o indi-
cates the degree of implicitness. For o = 1(0), the current
is treated in a fully implicit (explicit) manner; for o = %,
the current is time centered and the treatment of the strut
current is half-implicit. The two additional Equations, (6)
and (9), are sufficient to describe the system which now con-
tains the two additional variables I(z) and Q(z).

For advancing I and Q, Equations (6) and (9) are
written in the fully space and time centered form

E+E t t+k t+%
I -1 k) -1 5T ) -0 k) | 1 [eed t
-~ At poie Az ] 2 [Ez,av(k)+Ez,av(k)
(21)
1 -1
ot ey <ot T F ety 1t k1) -1t (1) s
At Az

Here, the dependence on all discretized spatial variables except

those indicating position along the strut has been suppressed.

The stability of the computational scheme corresponding
to Equations (20) through (22) with a = 1 and a = % has been
demonstrated in the two-dimensional calculations described in

Section 6. In the context of stability, it is worth noting
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that Equations (20) through (22) depart from the explicit
staggered-leapfrog scheme that is commonly employed in the solu-
tion of Maxwell's equations. If the conventional scheme were
retained throughout, then I and Q would be centered at

t +% and t, respectively. Equation (20) would have a = %
and Equations (21) and (22) could be replaced by the explicit
forms

t+ls t-1 £ et
500 -1""% 00 __o-1f 0% et -0 u>]+ ot ik

L At Az z,av
(23)
1 1
ot Lot eany o 1 gt gy

For sufficiently small values of L, i.e., for rods of radius
comparable with the cell size, we conjecture that, in contrast
to Eguations (21) and (22), the stability of these equations
require a time increment more restrictive than that imposed by
the Courant conditions over the portion of the mesh through

which struts do not pass; viz,

At <

Q>
N
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3.4 TWO-DIMENSIONAL SIMULATIONS OF STRUT GEOMETRY

Since off-axis struts in an otherwise axisymmetric
geometry pose an inherently three-dimensional problem, the
development in the previous section was three-dimensional from
the outset. On the other hand, in a cylinder with identical
struts parallel to the z-axis located at the same radial dis-
tance from the cylinder axis, and equally spaced in angle,
the azimuthally averaged fields for the mode of highest angular
symmetry satisfy precisely the two-dimensional field equations
of axisymmetric cylindrical r,z geometry. The mode of highest
angular symmetry is the only one excited, for example, by a
radially uniform pulse of X rays incident normally on one end
of the cylinder.

Particular interest is attached to the first two of the
relevant Maxwell equations given below in the vicinity of the
radial location of the struts:

OB aEr BEZ

¥ 95 - _
c 3t 3z or (25)
E
1 kS O
38 *t& Jz " ¥ &y (26)
W e SR i
¢ Jt c Jr 92

Here, the indicated fields are azimuthally averaged and r 1is
measured from the axis of the cylinder (rnot from a strut axis).

The difference equations in the strut-bearing zones, which

have radial index, I, are
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_ 1 [BYE ey, g4 -BY TR (1, )
c At
Eﬁ(It%,j+l)-E§(It%,j) 5 E;(Ii%+%,j+%)-E:(Ii%-%,j+%)
i Az Ar
(28)
+ ¢ 3 .
P s EOR LT L SO O T JREE SEPR
= -2 2 e 2nk-Ar = o gt
c At I~
+ . L :
L (gt SBT3 - (e - §5)BTE (1o, ) |
- (29)
Ty Ar

The quantity I(j) is the total current in all of the struts
at the z location with index j.

To complete the description requires a determination of
the current 1I; the required relations will be given in the
form of Equations (6) and (9). Equation (6) is simply the equa-
tion of continuity along the strut. Equation (9) must be derived
from a heretofore unused Maxwell eguation which describes depar-
tures from azimuthal symmetry. The presence of current and
charge on the struts lead, in fact, to a radial magnetic field,
Br’ which in the highest symmetry case considered here, vanishes

on averaging over azimuth. The defining equation

- e — T e c——

when integrated twice over € along the curve r = constant on

which the strut axes lie, yields

T/N 3] m/N 3]
T «E L Saas e b ¥ B SPTE
N Ez,av 5t f de jBr(S ygeg o + ¥ 7 f de f Ee(e )de
8o eo o eo
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where N 1is the number of struts and 90 the angle subtended
at r = 0 by a strut radius.

For struts separated by a distance b << r, it is reason-
able to approximate Br and Ee in the manner described in
Section 3.1, in which case Br and Ee are proportional to the
current and charge per unit length, respectively, on the struts.
This is a basically quasi-static approximation and requires,
as well, that the wavelengths of the fields being computed are
also large compared to the strut separation. In practice, this
is not always the case, but the considered approximations are
about as well as we can do in the two-dimensional simulation
of an inherently three-dimensional problem. Results based on
these two-dimensional approximations are presented in Section

35
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3.5 TEST CALCULATIONS

In order to test the difference formulations derived in
the previous sections, a series of axially symmetric 2-D
electromagnetic calculations was performed. They fall into

two general classes. The first consisted of tests of "loaded"
struts, that is, small diameter struts connecting large objects
so that the dominant features of the system are the strut induc-
tance and the objects' capacitance. The second tests involved
the behavior of an isolated radiating rod. Here, the system

is inherently electromagnetic in nature with the observable
features being the frequency of the radiation and the radiation
"resistance" damping oscillations on the rod.

For the "loaded" strut tests, a series of runs was made
of a conducting cylinder supported by off-axis cylindrically
symmetric struts in a conducting tank. The configuration is

shown in Figure 14.
The dimensions of the system are the following:

Inner cylinder: radius 83.5 cm
length 100 cm
Outer cylinder: radius 2.5 m
length 6 m
Support struts: length 2.6 m
distance off-axis 41.75 cm

The calculations were performed using FRED/EM~PRECHARGE, a

2-D fully electromagnetic code which has the capability of

initializing the fields to satisfy Laplace's equation. The
calculational mesh was 15 x 30 with AR = 16.7 cm and

=10 second,

AZ = 20 cm, and the timestep chosen was 3.85 x 10
which is 0.9 of the Courant timestep. Initially, the object
was charged to 10 kV with respect to the tank using the
PRECHARGE routine, an SOR Laplace solver that generates elec-
tric fields which are curl free to machine accuracy. The

dominant capacitance of this configuration is just
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Figure 14 - The configuration used for
testing the response of loaded
struts.
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6 ]

c=9 - 1.31 x 10 Coulomb _ ,; 5 o 10”10 farads
v 4 1
10" volts

This corresponds to a capacitance of 117 cm (esu).

] The charge, g, on the interior cylinder was calculated by

summing the normal (and only) component of its surface electric !
field. This is done automatically in the PRECHARGE routine.

For a first test, the strut inductance per unit length

=21

was set at 5 x 10 secz/cmz. This corresponds to a quasi-

static period of

1 2

2mw - = 27/IC = 2n/4260 x 5 x 10 l)'117 sec = 7.75 x 10—8 sec
or 201 code cycles. We would expect a priori the actual period
to be somewhat longer since the light transit time across the
tank is 2 x 10-8 sec. The particular value of L was chosen
to give a period long enough to be clearly resolved by the
code, but not so long that the calculations became ponderous.
Using Equations (11) and (13), we find that this corresponds

to a case of a single 2.38 cm diameter strut. The actual code

period was 9.34 x 10-8 sec or 1.6 x 10_8

sec longer than the
quasi-static prediction. This is quite plausible considering
that the period required for information to pass back and forth
through the tank is 4 x 10-8 second, The current midway along
the strut, as a function of time, is shown in Figure 15. The
initial conditions excited several modes, accounting for the
nonsinusoidal behavior. That the electric field obtained from
Equation (20) is indeed appropriate comes from examining the
magnetic field a half zone outside the strut at a radius of
50.1 cm. For example, at 6.11 x 10-'8 sec, the current in the
strut 80 cm from the tank wall was 69.6 amperes. Cylindrically
averaged, this would generate an average static magnetic field
of 0.2777 gauss at 50.1 cm. The code shows a field of 0.2786
gauss, extremely close to the static value. Since only the
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free space Faraday's equation is used to generate the magnetic

field, it shows clearly the correctness of the electric field
chosen at the strut. This kind of correlation accuracy is
maintained throughout the calculation. To minimize the dif-
ference, the magnetic field used as an example was chosen when
the displacement current was very small.

As another example, the oscillations of a case with an
inductance one sixteenth of the first case were calculated.
This corresponds to a symmetrical support of eight struts,
each 1.6 cm in diameter. Since the predicted quasi-static
period is smaller than a transit time, the calculated dynamic
electromagnetic period is much longer than the predicted quasi-
static period, 7.3 x 10'.8 sec vs. 1.9 x 10-8 sec. Also, the
free space inductance (not just the magnetic field energy in
the strut zone itself) is comparable to the strut inductance
which would lengthen the period in the electromagnetic calcu-
lation. Strut current vs. time from this calculation is shcwn
in Figure 1l6.

A simpler formulation of the "loaded" strut equations,
neglecting the capacitance of the strut, was tested. If the
results were similar to those of the previous calculations,
neglecting the capacitance would be a useful approximation
since it requires less computer storage. However, there were
serious difficulties using the inductance alone. In the case

=21
of L =5x10

0.7 % 10_8 sec (Figure 17). More importantly, the current on

secz/cmz, the period was lengthened by

the strut was not uniform as a function of position along the
strut. This resulted in charge buildup on the strut and un-
physical electric fields. Figures 18 and 19 show electric field
plots both without and with the strut capacitance. Notice the
large fields near the strut in the no capacitance case (Figure
18) and the very small fields near the strut in the capacitance

case. The plots were selected in both cases to maximize
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o

fields near the struts. The absence of the capacitance pre-

vents current from flowing with a uniform velocity down the strut.

The radiative properties of an isolated strut in a tank
were also tested using the TRPED/EM code. The first configur-
ation is shown in Figure 20. The discretized strut included
six charges and five currents. The zone sizes were as before.
Initially, the charge was distributed sinusoidally on the strut.
Current vs. time at the strut midpoint js shown in Figure 21,
The period is approximately 8 x 10_9 sec, corresponding to a
rod length of 120 cm. Figure 22 shows the same configuration
with the radial zone size increased to 30 cm. This increases
the distance to the radial wall resulting in a "clear" time
of 3 x 10*8 sec as compared to 1.7 x 10-8 sec in the case of
Figure 21. Figure 23 shows a configuration with the larger AR
and a rod increased in length by two cells (40 cm). The period
is now 10.8 x 10-9 sec, corresponding to a strut length of
162 cm. These times have an uncertainty of order 1/2 of time-

=0 sec). This translates to 4.5 cm

step (which was 3 x 10
uncertainties in the strut length. Thus, within the uncertain-
ties, the first two cases radiated like a 120 cm (6 zone) strut,
and the second like a 160 cm (8 zone) strut. The nonsinusoidal
behavior is due to the initial conditions exciting more than

the lowest mode.

One feature worth noting in these isolated strut calcu-
lations is the decay in amplitude of the strut current up until
the reflected signal returns. This is completely expected due
to the power lost from radiation. For the 2.38 cm diameter,
120 cm strut, theory predicts a damping time of 1.3 x 10‘8
second. Estimates of the actual numerical damping rate based
on Figure 22 agree well with the theory. Hcwever, more defini-
tive calculations are required to accurately determine the

numerical damping period.
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4

600 cm ——

~—120 cm —=
500 cm

\k\\ Isolated strut

Tank wall

Figure 20 - The configuration used for
testing the response of isolated
struts. In the second and third
cases, the tank diameter was
increased from 500 cm to 900 cm
in order to lengthen the "clear"
time.
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3.6 CONCLUSIONS

We have presented both theory and calculations support-
ing a technique for simultaneously solving free space wave
equations along with quasi-static circuit elements. The cal- i
culational results show that the technique is both stable and i
accurate. The simplicity of the final equations (e.g., (21) |
and (22)) makes them very easy to incorporate in existing !
Maxwell's equation codes. Since the new equations appear to %
have little effect on timestep size, current flowing through
small cross section objects can be treated without resorting
to fine zoning and its concurrent timestep limitations. Thus,
in case 2, presented in Section 3.5 where the strut diameter
was 1.6 cm, we were able to use a timestep of 3.845 x 10_10 sec,
more than a factor of 7 larger than would be allowed with

fine zoning. Equally important, the formulation presented

S Py

allows the two-dimensional calculation of the m = 0 response
of three-dimensional systems, such as off-axis symmetrical
struts. Included properly are effects of field penetration
between regions exterior and interior to the radial location
i“é of the struts. §

-

We feel, therefore, that these techniques make practical ¥
the computation of SGEMP response on many new classes of systems, 4
] in particular, those systems with current-carrying cables or

struts that have cross sectional dimensions small compared to

electromagnetic wavelengths.




SECTION IV

NONREFLECTIVE FREE SPACE BOUNDARY CONDITIONS
FOR SGEMP CODES

The grid in SGEMP codes is only of finite extent. For
most SGEMP calculations that have been carried out, the light

transit time across the grid is short; that is, comparable
to the driving pulsewidth. If waves are back-scattered or

reflected from the edge of the grid, they can interact with
fields and currents in the emitting region. For a satellite

in free space, the "clear time" for reflections should be long
compared to the characteristic times associated with the

driving pulse so that back-scattered waves do not enter into

the calculated response. So, in order to calculate SGEMP
response properly, it is necessary to devise boundary conditions

which do not reflect electromagnetic waves.

One technique which has been used is to impose a multi-
pole outgoing wave boundary condition. That is, the fields
on the outermost edge are varied as if the fields in their
neighboring cells were outgoing spherical waves. In general
practice, only the lowest multipoles are included. While,
conceptually, this technique is appropriate, in actual use
it has some flaws.

One difficulty is that in order to use only the low
order multipole terms, the boundaries should be a large distance
(compared to cbject dimensions) from the radiation source. This
requires either a large number of zones or large zones nearer
the boundary. A second difficulty is that the waves generated
numerically do not all have phase and group velocity, c, which
is independent of wave number. This is especially true for
wavelengths comparable to a few times the grid espacing. As a
result, especially if the grid spacing is made large near the
outer boundary, there will be phase mismatching on the boundary.
A third difficulty concerns the cumulative effects of errors. ;

Since the procedure is to generate fields at the boundary which

>3
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exactly cancel reflected wave amplitudes, any phase error

results in both the reflected wave not being cancelled as

well as a new incoming wave being generated. As a result,

those modes whose reflections are not eliminated well can be

pumped by the boundary conditions leading possibly to unstable

numerics. Ef
Our approach to the nonreflecting boundary problem has

been to try amplitude damping as opposed to phase matching.

The reasoning behind this is rather transparent; even if one

does not damp a wave completely, at least one can avoid pump- P

ing the mode.

If the region of space is current free, then the two

curl equations of Maxwell's equations can be written

3E
e e T b (30)
oB
R T (o)

oA P
=

Adding a damping coefficient, v, to each equation, we get

N—

3E \
T R B (32) |
oB :
Cbmikal dut e g |

If the spatial dependence of Vv 1is assumed to be extremely |
small, then, if §O(§,t) and §O(§,t) are solutions to ;
Equations (30) and (31), the solutions to Equations (32) and '
(33) can be written as ,
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B(x,t) 5
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As a result, waves in such a damped region would decay in
time.

Finite difference equations corresponding to Equations
(32) and (33) are

]

t*! - g = at(c v x B - vE)tHY/2

~

]

t+1 e
t+1/2 E + E
cAt V x B - VAt\————

VAE| Lt t+1/2
PUORN ol o

(34)
( vAt)

kot

o vag) E-1/2 &
gt+1/2 _ (1 ‘5‘)? s g

( vAt) (35)

LE o

Time centering is preserved and a degree of implicitness
is introduced which makes the equations stable. 1In practice,

v 1is a function of position and is only nonzero very close to
the outside of the mesh.

In the following section are analytical results describing
the damping and reflection of waves obeying Equatiocns (32) through

61
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(34) for both continuum and discrete cases. We present the
results of a series of one-dimensional numerical calculations
performed to determine the optimal spatial variation of the
damping factor, v,in Secticn 4.2. The last section shows the
effectiveness of this technique in preventing reflected waves
in a two-dimensional calculation.
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4.1 ANALYTICAL RESULTS

It is instructive to analyze the steady oscillations
corresponding to Equations (32) and (33) and t.o their discrete
analogues, Equations (34) and (35), for a one-dimensional infinite
medium with v > 0 in the half space x > Xg and vanishing
in the space x < X .

Assuming a steady wave propagating in the positive
x-direction for x > X r we shall determine the relative ampli-
tudes of left and right going waves in x < Xge

For the continuous case, the substitution

E(x,t) = e(x,t)cosh 1 - B(x,t)sinh 1 (36)
B(x,t) = B(x,t)cosh T - £(x,t)sinh T (37)
where
X
T = I vix')dx"' (38)
X
o

reduces Equations (32) and (33) to

Q
™

Q
w

|
I

@
t
@
b

(39)

(5]
w
(5>}
™

|
l

@
ct
L
-

equations which are formally ecuivalent to the original Maxwell
equations without the damping term.

Equations (39) admit a steady wave propagating to the
right
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3
?
A

ei(wt-kx)

€ = €
o
o i e1(wt-kx) (40)
with ¢
4
i 8
¥
w=ck (41) ¥
Thus,
i i
E =B = ce (42)

also propagates to the right. The E and B fields are damped
in x > X7 in x < Xy the fields have their free space values

and there is no reflected wave.

In the discrete case, the waves may also be damped in
X > Xi but, in general, there will exist a reflected wave in

the half space x < X,+ DNow assume that v = constant for 1
X > X, i.e., for the discrete spatial coordinate n > N, i

and vanishes otherwise.

Assuming a solution of the form

ei(ijt-nk'Ax)

E=E _
(43) I
v s = 4 '3
B =B oi[(3+1/2)wit-(n+1/2) k" ax]
Equations (34) and (35) reduce to
2i sin 9%3 it 21 € Sih k gx
. + v cos —— | B_ = E (44)
At 2 fo) Ax o
s U A
2i sin 9%5 i 21 ¢ sin S X
3 + v cos = Eo = = Bo (45)
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where Eo = tBo; in particular, for EO = Bo
sin k'éx = é%f sin mét | zéx cos 9%5
= sin kgx = i ;gx cos E%E (46)
where
sin E%E = %%E sin 9%5 (47)

is the dispersion relation in the absorption-free half space.

The imaginary part of k' determines the attenuation in

the absorbing m=dium. Writing k'%-E = U “+ iUI, and separating

R
real and imaginary parts in Equation (46), there results

A : Pl S
cosh UI sin UR = sin —
; o VX wAt
sinh UI cos UR = 5 cos >
By inspection, we find
kAx m
UI< 0 for —2-—5_5

and

clAt

Ax <1

Thus, all wavelengths resolvable on the mesh are damped; wave-

lengths near A = 2Ax are only weakly damped for %%E near
unity and are undamped for %%E = 1,

To obtain the reflection coefficient, consider solu-
tions having the form of Equation (43) with Bo = Eo for
n > N, and the form

65
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s >

E = elijt (ae-lknAx e belknAx)

- ei(j+l/2)wAt e-ik(n+l/2)Ax eik(n+l/2)Ax

(a - b )

for n < N-1.

Equations (43) determine EN and BN+1/2' The complex
coefficients a and b are determined using Equation (34) for

m = N and Equation (35) for n = N-1, remembering that

Vg =0 and L 0. Following a simple but tedious calcula-
tion, we find the reflection coefficient

-i(k'-k)
l - e

-1i(k'+k)
1l + e

o

N‘? l\)‘;’

where the complex wave number k' 1s related to the given real

quantities k and v by Equation (46).

In general, although Eguation (46) must be solved numeri-
cally before r can be determined, two limiting cases are
amenable to simple analysis. When

AX
K =— <<
:(2< ) ¢
o
and
cAt
—
Ax = —
then
vAx
- 20
cAt x :
FoE o ® 1 and kdx = m, r = 0. Nevertheless, since
k' = 0, a wave encountering a boundary at finite x in the damp-

ing medium will be reflected and return with undamped amplitude

T e i R IR S 5. 5 Ao S 2 T
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cAt
Ax
and there will be some damping of the reflected wave, the

to the absorption free region. In practice, however, S b

amount depending on the thickness of the absorbing medium.
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4.2 1-D PARAMETER STUDY

IV DTt s v | v

The spatial variation of the damping coefficient, v,

in Equations (32) and (33) makes the problem of analytically pre-
A dicting wave behavior difficult since the space is no longer |
homogeneous. As a preliminary indication of the method's !;
validity, a one-dimensional transverse electromagnetic wave ‘ﬁ
code was written. This code has 100 cells in the x-direction i
4 with edge centered y-components of electric field and cell

centered z-components of the magnetic field. It numerically U

follows the propagation of plane polarized TEM modes in the

45 e il i

x-direction. The wave source was a sinusoidally varying
y—-component current located at the midpoint of the grid. The
damping coefficient, v, was zero everywhere except within a

specified number of cells from either edge of the mesh. Cal-

1
2
3
¥
g
%

culations were run to determine the functional form of the

damping coefficient's spatial dependence which best minimizes

the amplitude of the reflected wave after the wave source was

turned off (50 cycles).

‘“:2-;&- [ -

After several runs, several characteristics of the
technique were apparent. The first was that increasing the
number of damping zones from 5 to 10 on each side of the mesh

made small differences (factors of 2) in the reflected wave

.“ ‘_4 ,.
i &

amplitude. Second, the damping should increase slowly from
zero to some number such that

vat > 1.0

-

Finally, the damping effectiveness was proportional to wave-
length.

Let us examine the results of a set of runs made with .

3.8. The damping increases quadratically from

i(;\) At
2

)max

zero in each boundary region
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b
{
|

e o s T R =

3.8*%(5-x)°/25, x <5
= 0, 55 x <95
3.8(x-95)2/25, x >95

v (x) At

Table 1 presents the maximum electric field amplitude in

the mesh after 200 timesteps (cAt = 0.90) for a range of pump
frequencies. It is apparent that longer wavelengths damp mcst
effectively, as discussed in Section 4.1, but that even for high
frequency, short wavelengths, over 93 percent of the wave
amplitude is damped after 200 cycles. The damping of the
longest wavelength is almost 99 percent effective. Figure 24
shows a plot of the percent remaining after 200 cycles vs. the
frequency of the pump mode. The relation is linear to a
remarkable degree. This bodes extremely well for SGEMP res-
ponse calculations, since the wavelengths associated with the
strong electromagnetic waves generated by the ringing of surface

currents are usually large compared to grid spacings.

One point to note is that the damping coefficient gets
considerably larger than the timestep, that is,

vaAE > 1
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10
9
20
30
60

Table 1

THE EFFECTIVENESS OF THE DAMPING
ON WAVES FOR VARIOUS FREQUENCIES

]B(t=50)]max }B(t=200)}maX $ remaining
0.550 0.037 6.7
0.556 0.024 4.3
0.521 0.018 3.5
0.511 0.012 2.3
0.504 0.006 12
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Figure 24 - Remaining field amplitude vs. frequency for the
l-dimension parameter study.
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4.3 DAMPED WAVE BOUNDARIES IN TWO-DIMENSIONS

To test the usefulness of the damping theory in two
dimensions, a sample calculation was performed. Previously,
the behavior of a precharged rod inside a conducting cylinder
had been calculated. The system parameters were

cylinder length = 600 cm
radius = 450 cm
rod length = 120 cm
radius = 1.19
mesh Az = 20 cm
AR = 30 cm .

The configuration is shown in Figure 25,

The current at the middle of the wire as a function of
time is shown in Figure 26. 1In this case, the precharge was
chosen to be purely sinusoidal as opposed to those in Section

3.5, and as a result, very little harmonic distortion is evident.

Damping was added to the outer time zones using the
quadratic prescription as in the one-dimensional example. 1In
this case, we calculated a damping coefficient based on the
z-coordinate and another based on the r-coordinate. The damp-
ing coefficient used was the maximum of the two. Figure 27 shows
how the damping effectively reduced the reflections from the
walls. High frequency distortion is apparent when the effect
of reflections was first seen in Figure 27. This results from
the inefficient damping of high frequency modes as discussed
in the previous sections. The overall stability of the system

should be noted; there are no growing oscillations at late times.
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\K\\ Isolated strut

Tank wall

Figure 25 - The configuration used for testing
the effectiveness of the damping
in two-dimensions.
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- The current at the wire center vs. time for
the case with no damping.
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Figure 27

- The current at the wire center vs. time with damping
in the outermost 5 zones. The damping parameters
were chosen from the results of the 1-D study
described in Section 4.2.
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